Integrating Biomolecular and Clinical Data for
Cancer Research: Challenges and Concepts
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Cancer Research and Challenges

= Clinical research is driven by access to
patient samples

= New technologies (sequencing, microarrays,
proteomics) are driving discovery

= Clinical and research data are in different
domains with no links between them

* Interpretation of the data requires integration
of information across domains
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Omics Technologies

New high-throughput technologies

DNA: deep sequencing

RNA: high-density arrays
Protein: MALDI-TOF, LC-MS/MS
Tissue: tissue microarrays

Complementary technologies, real value in integrating diverse
datasets

Data management and analyses?



Omics Technologies

Drowning in data, starving for information?

= Microarray data (n=1):
Affymetrix HG U133A2 chip

= Raw data: 80 MB per sample (incl. TIFF)
= MAGE-ML (public repositories): 30 MB
= Normalized data: 5-10 MB (Excel table or text file)



Omics Technologies

Drowning in data, starving for information?

= Proteomics data (n=1)
Kisslinger et al, Cell 2006, 125:173-186

one organ (heart), one organelle (cytosol)
= Raw data: 1.55 GB (mzXML format)
= Sequest search folders: 235 MB
= Results in PRIDE format: 320 MB
= Results incl. protein sequences: 374 KB



Medical Systems Biology

= n>100

* Phenotype data (clinical parameters)

= Genomics data (SNPs)

= Gene expression data (microarrays)

* Proteomics data (LC-MS/MS)

» Pharmacology data (pharmacokinetics/dynamics)
* Medical Images (CT, MR, PET, Ultrasound)

» Literature data (PubMed, Cochrane)

= Computational biology data (Ensembl, HPRD,...)

Data warehouse (,Google” for biomedical data)?



Data Integration

= Herculian task

* Few standards

= System incompatibilities
» Organizational issues

= Specific requirements in specific
institutions



Data integration

Modular state-of-the-art software technology
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Science is built up with facts, as a
house Is with stones. But a collection of
facts Is no more a science than a heap
of stones is a house.

- Jules Henri Poincaré



From Data Collection to Discovery

= Case study: Colorectal cancer

= Second leading cause of death among cancer
patients

= 1932: Dukes classification for postoperative
outcome™

= Today: Classification accuracy unchanged

» Predictive molecular markers and rationale for
adjuvant therapy?

*Dukes C, J Pathol Bacteriol, 35:232, 1932



Cancer Immunology

Spread to other organs

Normal

Role of the immune system in colorectal cancer?



Data Generation and Integration

» Retrospective cohort (1986-2005)
»= C(Clinical data and follow-up (n>1000)

= Patient material: paraffin-embedded tumors (>1000) and frozen
tissue (>100)

= Assays: double-funnel approach
= FACS analysis of 410 parameters (n=50) parameters  patients

= gPCR of 50 mRNAs (n>100)
= Tissue microarrays (n>500)

= Dedicated database for biomolecular and clinical data
(http://tme.tugraz.at)*

*Mlecnik et al. BMC Genomics, 2010



Phenotypes of tumor-infiltrating immune cells

Significantly different markers between invasion positive (VELIPI+) and negative (VELIPI-) patients

VELIPI: vascular emboli (VE), lymphatic invasion (LI), perineural invasion (PI)
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Effector Memory T-cells and Survival

Disease-free and overall survival of CD45RQO" patients
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What is the Relationship between the
Type, Density, and Location of Immune
Cells within Tumors and the Clinical
Outcome?



Adaptive Immunity has a Beneficial Effect
on Clinical Outcome

Inflammation Adaptive Immune Adaptive Immunity
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Disease Free Survival

Galon et al. Science, 313:1960-1964, 2006

Combined Analysis of Tumor Regions Improves
Prediction of Patient Survival

Center of the Tumor (CT)
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Patient Stratification

Spread to other organs
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Immunological criterion for predicting
tumor recurrence

Once human colorectal cancers become clinically detectable, the
adaptive immune system plays a role in preventing tumor recurrence

Type, density, and location of immune cells within colorectal tumors
influence the clinical outcome of the patients

An immune score based on the combined evaluation of memory and

cytotoxicity markers identifies patients with early-stage (stage | and Il)
tumor at high-risk of tumor recurrence and death*

*Pageés et al. J Clin Oncol, 2009



Immunological criterion for predicting
tumor recurrence

Sensitivity

== |mmune score
=== |mmune score + perforation
=== Perforation

AJCC/UICC TNM-classification
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Mlecnik et al. J Clin Oncol, 2011

Immune score:
(2 markers, 2 regions)

ImO: O - hi, 4 - lo (lolololo)

Im1:1-hi,3-1lo
Im2:2-hi,2-1lo
Im3:3-hi, 1-1lo

Im4: 4 - hi, O - lo (hihihihi)



Immunological criterion for predicting
tumor recurrence
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TNM Staging in Colorectal Cancer: T Is for T Cell

and M Is for Memory

Elizabeth K. Broussard and Mary L. Disis, Tumor Vaccine Group, Center for Translational Medicine in Women’s Health,

University of Washington, Seattle, WA

metastatic phenotype.'? A focused investigation of patients with early-
stage colorectal cancer suggested that a multimarker panel of
CD45RO-positive and CD8-positive T cells and cytotoxicity-related
genes could predict prognosis even in these patients with minimal
disease.” Taken together, these studies laid the foundation for the
immune score presented by Mlecnik et al® as a clinical prognostic
marker at any stage of colorectal cancer.

Results presented in the current report by Mlecnik et al® have
both biologic and clinical importance. The presence of high-density
memory T cells that are cytotoxic and display markers that suggest the
cell is activated and capable of killing tumor cells (granzyme B) sug-
gests that the adaptive immune system does, indeed, play a major role
in tumor eradication and disease outcome. The fact that the density of
these infiltrating T cells can be quantitated and that they are an inde-
pendent predictor of prognosis suggests that the evaluation of CD8-
positive and CD45RO-positive T-cell density should become part of

the standard practice of evaluating colorectal cancer, or even other
tumors, at the time of diagnosis. In addition, with the advent of several
successful immune-based cancer therapies that result in a statistically
significant survival benefit in randomized clinical trials,*®** perhaps
an immune score would identify a population of patients who would
derive substantial benefit from further stimulating their adaptive im-

mune response.




Biomolecular networks
» Sequential analyses of datasets: powerful but
limited
» Mechanistic insights?
* Clues for developing (immuno)therapy?

=> Integrative data analyses using biomolecular
networks



Reconstruction of immune network in colorectal cancer
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Chemokines attract specific phenotypes of T-cells
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Data integration uncovers molecular mechanisms

Chemokines CX3CL1, CXCL9, CXCL10 attract specific
subsets of T cells within the tumor

Chemoattraction and the presence of an addaptive immune
reaction within the tumor are critical parameters influencing
the outcome of colorectal cancer

Can we predict therapeutic usefulness of targeting specific
molecules and pathways (immunotherapy)?



Outlook: Computational Challenges

= Data integration
= Molecular data (deep-sequencing, expression, proteomics)

= Cytogenetic data
= |maging data

» Modeling biomolecular networks

= Pathways and networks

= Multi-scale modeling:
= Spatial: nm to m (from molecules to cells to organs)
= Temporal: min to yrs



Computers and Medicine
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