Knowledge management in a Systems Biology approach to translational medicine

Dieter Maier¹, Miguel Hernandez², Jordi Villa i Freixa² and Sascha Losko¹

1 Biomax Informatics AG ● Lochammer Str. 9 ● 82152 Martinsried ● Germany ● bioxm@biomax.com
2 Universitat Pompeu Fabra ● Placa de la Merc, 10-12 ● 08002 Barcelona ● Spain

Introduction
The EU BioBridge project approaches complex phenotypes on a molecular level which requires computational modelling and simulation based on specific environments.

- 7 partners from academia, clinic and industry
- Mechanisms of chronic obstructive pulmonary disease (COPD), cardiovascular diseases and diabetes
- Chronic systemic inflammation as common disease mechanism?
- Biomarker guided diagnosis and therapy suggestions
- Simulation based phenotype analysis, diagnosis and therapy

Why Knowledge management?
- Judge biological significance of statistical data analysis
- Adapt general models to specific environments
- Connecting different levels of knowledge (molecular, physiologic, clinical) is a prerequisite for a translational approach to research

What are the challenges?
- Joining different levels of information in a system requires objects highly connected in different scientific fields
- Mapping entities e.g. genes from different sources (Genbank ID, KEGG-ID, Literature name)
- Mapping descriptions e.g. cancer - blastoma by using controlled, structured vocabularies
- Navigating the network resulting from data integration and mapping, providing suitable sub-networks to answer questions
- Reporting exactly all significant parts of the sub-network answering the question

Object oriented semantic mapping and dynamic reporting
BioXM conceptualises the standard representation of life science knowledge, the scheme of interacting entities and their relations. Based on controlled vocabularies and dynamically defined objects, relations and annotations the data is integrated into a project specific knowledge network.

Data Types
Object Development
Analysis Task
Modeling Environment

Context specific Sub-Networks
The BioXM knowledge management system, integrated into the BioBridge portal, provides the multi-level knowledge, data integration and retrieval required to model complex phenotypes such as COPD and to iteratively improve simulation results and experimental approaches.

Integrating COPD specific molecular networks, clinical and experimental data
The BioBridge BioXM instance integrates (directly or by interfacing)
- > 20 public databases
- > 10 ontologies
- 80,793 genes (30,246 human, 27,237 mouse, 23,310 rat)
- 1,507 pathways
- 78,523 compounds
- 1,525,474 protein interactions
- 3,666,213 connections overall in the knowledge network
- The entire Gene Expression Omnibus and BioModels databases
- BioBridge internal clinical and experimental data (expression, metabolomics and proteomics)
- BioBridge literature-mining derived molecular networks for COPD, cardiac disease, chronic systemic inflammation, diabetes and lung and muscle specific signalling sub-networks.
- Literature derived exercise and COPD specific kinetic and metabolic data
- Mathematical models and probabilistic networks generated within the BioBridge project

Extracting sub-networks of integrated information for modelling and simulation
Context specific sub-networks such as the muscle specific remodelling pathways are integrated with the corresponding experimental data. Data analysis such as principal component analysis (PCA) for pathways or seed based network inference find and extend molecular networks affected by condition and treatment.

Conclusion
The BioBridge project is supported by the European Commission and is part of the Sixth Framework Programme.

References

www.biobridge.eu www.biomax.com